

Histone Acetylation is not Affected by Chloroacetamides *in vitro*

Friedhelm Kring and Peter Böger

Universität Konstanz, Lehrstuhl für Physiologie und Biochemie der Pflanzen, Postfach 5560, D-78434 Konstanz, Bundesrepublik Deutschland

Z. Naturforsch. **49c**, 309–311 (1994); received February 28, 1994

Acetylation, Alachlor, Histone Acetyltransferase, Histone Deacetylase, Metazachlor

The effects of chloroacetamides on the acetylation of histone protein in maize (*Zea mays*) were studied in an *in vitro* assay. Neither alachlor nor metazachlor showed any influence on both of the investigated acetylating enzymes, the nuclear histone acetyltransferase A and the cytoplasmic histone acetyltransferase B. Furthermore, an effect of these herbicides on deacetylation of histones could be excluded.

Introduction

Chloroacetamides are widely used as preemergent herbicides for the control of grasses and some broadleaf weeds. Although the first active compound of this group of herbicides has been developed more than 40 years ago (Jaworski, 1965), and a dozen or more of these chemicals have become the active ingredient of commercially important herbicides, their primary mode of action remains unknown. Many different effects on biochemistry, physiology, and morphology of various treated plant species have been reported (for review see Fuerst, 1987; LeBaron *et al.*, 1987). Generally, disturbance of cell metabolism leads to a significant inhibition of germination of susceptible weeds. Apart from inhibition of cell division and synthesis of flavonoids, isoprenoids, epicuticular waxes, and protein, especially synthesis (Weishaar *et al.*, 1988) and desaturation (Couderchet and Böger, 1993) of fatty acids and lipids (Mann and Pu, 1977) seem to be affected.

Recently, evidence for inhibition of acetylation of DNA-associated protein was presented (Weishaar and Böger, 1991). In eukaryotic cells the DNA is associated with histones to form nucleosomes, containing two molecules of each of four histone species. 26 to 28 possible acetylation sites within a nucleosome (Doenecke and Gallwitz, 1982) ensure a dynamic state of histone acetylation, controlled by acetylating and deacetylating

enzyme activities (Loidl, 1988; López-Rodas *et al.*, 1993). Disturbance of this enzyme activities leading to impaired regulation of histone acetylation with its implications on replication and transcription processes in the affected cells would explain the variety of reported effects of the chloroacetamides.

The present investigation was performed to elucidate the influence of chloroacetamides on the histone-acetylating and -deacetylating enzymes in plants. We studied the effect of alachlor and metazachlor on histone acetylation using an *in vitro* system.

Materials and Methods

Seeds of maize (*Zea mays* M320) or barley (*Hordeum vulgare* var. Gimpel) were germinated in the dark for 3 to 4 days. The root tips were ground to powder in liquid nitrogen. Resuspension, homogenization and dialysis were performed as described (López-Rodas *et al.*, 1991). The dialysate was centrifuged at 27,000×g for 10 min and the supernatant loaded onto a column of DEAE-Sepharose CL-6B (1×11 cm), equilibrated with buffer (15 mM Tris-HCl, pH 7.9 (N-tris-(hydroxymethyl)-aminomethane), 10 mM NH₄Cl, 0.25 mM EDTA, 10 mM β-mercaptoethanol, 10% (v/v) glycerol). Elution was performed with a linear gradient of 10–350 mM NH₄Cl in the same buffer with a flow rate of 18 ml/h. Fractions of 2.8 ml were collected and assayed for enzyme activities. Alternatively, a Mono-Q column was used for HPLC separation of the acetyltransferases from an extract of maize seedlings after 12 h or 40 h of germination. The nuclear histone acetyltransferase (A) was always separated from the cytoplasmic

Reprint requests to Prof. P. Böger.
Telefax: (049) 75 31-88 30 42.

0939-5075/94/0500-0309 \$ 03.00
© Verlag der Zeitschrift für Naturforschung,
D-72072 Tübingen

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht:
Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland Lizenz.

Zum 01.01.2015 ist eine Anpassung der Lizenzbedingungen (Entfall der Creative Commons Lizenzbedingung „Keine Bearbeitung“) beabsichtigt, um eine Nachnutzung auch im Rahmen zukünftiger wissenschaftlicher Nutzungsformen zu ermöglichen.

This work has been digitized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution-NoDerivs 3.0 Germany License.

On 01.01.2015 it is planned to change the License Conditions (the removal of the Creative Commons License condition "no derivative works"). This is to allow reuse in the area of future scientific usage.

acetyltransferase (B). The preparations were partially pure as reported previously (López-Rodas *et al.*, 1991).

Histone acetyltransferase activity was measured according to López-Rodas *et al.* (1991): 100 µl of the enzyme-containing chromatographic fraction were mixed with 120 µg of histones from chicken erythrocytes (López-Rodas *et al.*, 1991) or calf thymus (Sigma, Deisenhofen) and 50 nCi (1.85 kBq) [1^{-14}C]acetyl-CoA (Amersham, Braunschweig). After a 20 min incubation period at 37 °C with herbicide present in the concentration indicated or of an equal volume of solvent, respectively, aliquots of this reaction mixture were placed on glass fiber filters, which were subsequently air-dried for 5 min. The filters were then submersed in ice-cold 25% (w/v) trichloroacetic acid, after 20 min washed twice with fresh 25% (w/v) trichloroacetic acid and once with ethanol, ethanol:ethylether (1:1, v/v) and ethylether, respectively, to remove radioactive label not bound to the histones. Finally, the filters were dried at 70 °C for 10 min and after adding 5 ml of INSTA Gel (Packard, Groningen) the radioactivity remained was measured by scintillation counting.

Histone deacetylase activity was assayed according to Sendra *et al.* (1988). To 200 µl of enzyme-containing solution herbicide or an equal amount of solvent was added. The mixture was incubated at 37 °C for 2 h with 10 µl of histones (4 mg/ml) from chicken erythrocytes, prelabeled with [^3H]acetate (2500 cpm/µg, Amersham, Braunschweig) as described by Ferenc and Nelson (1985). The reaction was stopped by acidification of the solution with 70 µl of 1 M HCl/0.4 M H₂SO₄ to protonate the released acetate. After addition of 1 ml ethylacetate, the mixture was vortexed thoroughly and centrifuged for 5 min at 10,000×g. The supernatant (upper phase), containing the released acetate, was carefully removed from the lower aqueous phase, mixed with 5 ml of INSTA Gel (Packard, Groningen) and radioactivity detected by liquid scintillation counting.

Results and Discussion

Assays of the chromatographic fractionation of extracts of meristematic maize cells reveal at least two distinct peaks of enzyme activity of histone acetyltransferases A and B, representing a nuclear

and a cytoplasmic form, with differences in histone specificity. Fig. 1 (upper part) shows the enzymatic activity of the A-form after incubation with and without alachlor and metazachlor, respectively. The good reproducibility of the enzyme activity is by no means affected by the two herbicides. Lack of any inhibiting effect of the tested herbicides on the enzymatic activity *in vitro* is obvious. Analogous results have been found for the histone acetyltransferase B (Fig. 1, lower part). Unfortunately, no naturally occurring *in vitro* inhibitor of these enzymes is available to be compared with the chloroacetamides.

Analogous experiments with extracts from meristematic barley cells (*Hordeum vulgare*), fractionated by anion-exchange chromatography on DEAE-Sepharose, repeated the zero effect of chloroacetamides on the acetylating enzymes.

Similar results were found with the histone-deacetylating enzyme (Fig. 2). The activity of this enzyme is neither inhibited nor increased in the presence of any of the chloroacetamides tested in this assay. Furthermore after incubation of plant material with chloroacetamides up to 100 µM the isolated enzymes revealed no significant differences in HPLC elution profile and enzyme activity (data not shown).

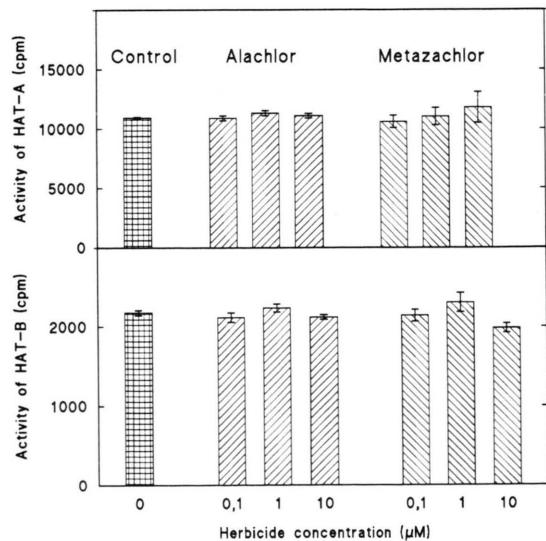


Fig. 1. *In vitro* activity of histone acetyltransferase A (HAT-A, upper part) and histone acetyltransferase B (HAT-B, lower part) from maize in presence or absence of the chloroacetamide herbicides indicated.

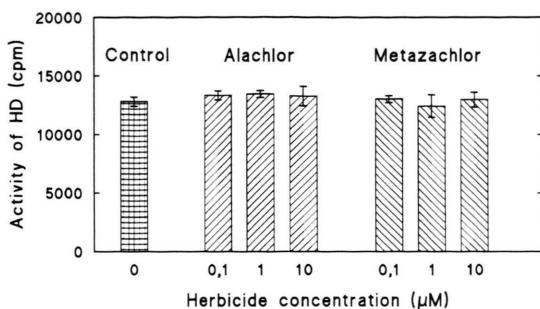


Fig. 2. *In vitro* activity of histone deacetylase (HD) from maize in presence or absence of the chloroacetamide herbicides indicated.

Our original hypothesis about chloroacetamide action affecting the acetylation level of histone protein (Weisshaar and Böger, 1991) has to be revised and some former results should be reinterpreted.

Acknowledgements

The authors wish to thank Dr. P. Loidl (Innsbruck) for giving them the possibility to perform part of the experiments in his laboratory and G. Brosch, Dr. E. I. Georgieva and Dr. G. López-Rodas (Innsbruck) for their useful cooperation. This study was supported by the Fonds der Chemischen Industrie.

Couderchet M. and Böger P. (1993), Chloroacetamide-induced reduction of fatty acid desaturation. *Pestic. Biochem. Physiol.* **45**, 91–97.

Doenecke D. and Gallwitz D. (1982), Acetylation of histones in nucleosomes. *Mol. Cell. Biochem.* **44**, 113–128.

Ferenc C. R. and Nelson D. A. (1985), N-Butyrate incubation of immature chicken erythrocytes preferentially enhances the solubility of β^A chromatin. *Nucleic Acid Res.* **13**, 1977–1995.

Fuerst E. P. (1987), Understanding the mode of action of the chloroacetamide and thiocarbamate herbicides. *Weed Technol.* **1**, 270–277.

Jaworski E. J. (1956), Biochemical action of CDAA, a new herbicide. *Science* **123**, 847–848.

LeBaron H. M., McFarland J. E., Simoneaux J. B. and Ebert E. (1988), Metolachlor, in: *Herbicides: Chemistry, Degradation, and Mode of Action* (P. C. Kearney and D. D. Kaufmann, eds.), chap. 7, Dekker, New York.

Loidl P. (1988), Towards an understanding of the biological function of histone acetylation. *FEBS Lett.* **227**, 91–95.

López-Rodas G., Brosch G., Georgieva E. I., Sendra R., Franco L. and Loidl P. (1993), Histone deacetylase: A key enzyme for the binding of regulatory proteins to chromatin. *FEBS Lett.* **317**, 175–180.

López-Rodas G., Georgieva E. I., Sendra R. and Loidl P. (1991), Histone acetylation in *Zea mays* I: Activities of histone acetyltransferases and histone deacetylases. *J. Biol. Chem.* **266**, 18745–18750.

Mann J. D. and Pu M. (1977), Inhibition of lipid synthesis by certain herbicides. *Weed Sci.* **16**, 197–198.

Sendra R., Rodrigo I., Salvador M. and Franco L. (1988), Characterization of pea histone deacetylases. *Plant Mol. Biol.* **11**, 857–866.

Weisshaar H. and Böger P. (1991), Further effects of chloroacetamides and evidence for inhibition of acetylation of DNA-associated protein. *Pestic. Biochem. Physiol.* **39**, 20–26.

Weisshaar H., Retzlaff G. and Böger P. (1988), Chloroacetamide inhibition of fatty acid synthesis. *Pestic. Biochem. Physiol.* **32**, 212–216.